Industry Standards Downloadable Guides

Chemical Compatibility Charts - Plastics

Allvalves Online Technical Support

Technical Support Document

www.allvalves.co.uk

Chemical resistance of common plastics used in valves.

The information in these tables is offered as a general guide only to the chemical resistance of commonly used materials in the construction of PLASTIC valves.

These tables are not to be used as an absolute recommendation as there are too many factors that can influence the corrosion resistance, such as temperature, temperature fluctuations, concentrations and solutions, velocity and abrasion. Allvalves Online Ltd therefore accept no responsibility for any problems arising from use of these tables. We recommend that if any doubt exists as to the resistance of a material to a specific chemical, that tests be carried out to verify the compatibility.

What the ratings mean:

Ratings are based on media at ambient/room temperature unless otherwise stated.

- + EXCELLENT RESISTANCE Material unaffected or insignificantly affected
- 0 CONDITIONAL RESISTANCE Media can attack the material or cause swelling, pressure and/or temperature restrictions must be made and the serviceable life of the valve can be noticeably reduced.
- - DO NOT USE, NO RESISTANCE can not be used at all.

Abbreviations for seal materials used in the tables:

Aggressive media					Ch	emio	al re	sist	ance	:		_	_		
Medium	Formula	Bolling point °C	Concentration	Temperature °C	Pvc-u	PVC-C	ABS	PE	рр-н	PVDF	EPDM	FPM	NBR	CR	CSM
Acetaldehyde	CH₃-CHO		40 %, aqueous solution	20 40 60 80 100 120 140	0	-	-	+	+ 0 0 0 .	-	+ 0 0 0	+ + 0	-	+ + 0 -	+ + 0 0
Acetaldehyde	CH ₃ -CHO	21	technically pure	20 40 60 80 100 120 140		-	-	0	0	-	0	0	-	-	0
Acetic acid	сн₃соон		50 %, aqueous	20 40 60 80 100 120 140	÷ o	+	-	+ + +	++++	+ + + 0 0	÷ o	0	-	0	0
Acetic acid	сн₃соон	118	technically pure, glacial	20 40 60 80 100 120 140	-	-	-	+ + 0	+ + 0 -	+ 0 -	0	-	-	0	0
Acetic acid anhydride	(CH ₃ -CO) ₂ O	139	technically pure	20 40 60 80 100 120	-	-	-	÷ 0	0	-	0	-	-	-	+
Acetic acid ethylester	CH₃COOC₂H₅	77		20 40 60 80 100 120 140	-	-	-	÷	+	+	+	0	0	0	0
Acetic acid isobutyl ester	(CH ₂) ₂ -CH-(CH ₂) ₂ -CO ₂ H	117	technically pure	20 40 60 80 100 120 140		-	-	÷	+	+	+	-	-	-	+
Acetone	сн,-со-сн,		up to 10 %, aqueous	20 40 60 80 100 120 140	-	-	0	+++++	÷ ÷	000	+ + +	00.	-	÷ 0 -	000
Acetone	CH3-CO-CH3	56	technically pure	20 40 60 80 100 120 140		-	-	+ + +	÷ ÷	-	+ + + +	-	-	-	000

Aggressive media					Ch	emic	al re	esista	ance	:		_	_	_	_
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-U	Pvc-c	ABS	PE	н-н	PVDF	EPDM	FPM	NBR	CR	CSM
Ammonium acetate	CH₃COONH₄		aqueous, all	20 40 60 80 100 120 140	+	+ + +	0	+ + +	+ + + + +	+ + + + +	+ + + 0	+ + +	0	+ + 0	++
Ammonium persulphate	(NH ₆) ₂ S ₂ O ₈			20 40 60 80 100 120 140	+	+ 0 0 0		+	0	+ + + + +	+	+	0	+	+
Amonium salts, aqueous, inorganic			saturated	20 40 60 80 100 120 140	+	÷ ÷ ÷		+	++++	+ + + + +	+	+ + + +	+ + +	+	++++
Amyl acetate	CH ₃ (CH ₂) ₄ -COOCH ₃	141	technically pure	20 40 60 80 100 120 140	-	-	-	+	0 0 .	+ 0 0	0	-	-	-	-
Amyl alcohol	CH ₃ (CH ₂) ₃ -CH ₂ -OH	137	technically pure	20 40 60 80 100 120 140	+	-	-	÷ ÷	÷ ÷ ÷	+ + + + 0	÷ ÷	0	+ + +	÷ ÷	0
Aniline	C ₆ H ₅ NH ₂	182	technically pure	20 40 60 80 100 120 140		-	-	0	÷ ÷ 0	+ 0 -	÷ ÷	000	-	-	-
Antimony trichloride	SbCl ₃		90 %, aqueous	20 40 60 80 100 120 140	÷ ÷	÷ ÷	-	÷ ÷	÷ ÷	++++	÷	+	-	÷	+
Aqua regia	HNO₃+HCI		mixing ratio	20 40 60 80 100 120 140	÷ 0	÷	-	-	-	0	-	0	-	-	0
Arsenic acid	H ₃ AsO ₄		80 %, aqueous	20 40 60 80 100 120 140	+	÷ ÷ ÷	+++++	÷ ÷	+ + +	+ + + + + +		+ + + +	+ + + 0	+ + +	+ + + +

Aggressive media					Ch	emic	al re	sist	ance						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-u	PVC-C	ABS	PE	PP-H	PVDF	EPDM	FPM	NBR	CR	CSM
Barium salts, aqueous, inorganic			saturated	20 40 60 80 100 120 140	+	+ + + +	+	÷ ÷	+ + + +	+ + + + + + +	+ + + +	+ + + + +	+	+	+
Beer			usual commercial	20 40 60 80 100 120 140	l	÷	+	+	+	+		+	+	+	+
Benzaldehyde	C ₆ H ₅ -CHO	180	saturated, aqueous	20 40 60 80 100 120 140		-	-	÷ • •	0	÷ 0 -	÷ ÷ 0	+ + + +	0	-	-
Benzene	C _e H _e	80	technically pure	20 40 60 80 100 120 140		-	-	0	0	÷ 0 -	-	+	0	-	-
Benzene sulfonic acid	C ₆ H ₅ SO ₃ H		technically pure	20 40 60 80 100 120 140		+		÷ • 0	÷ • •	÷ ÷ ÷	÷ • •	+			
Benzine (Gasoline)	C ₅ H ₁₂ to C ₁₂ H ₂₆		free of lead and aromatic compounds	20 40 60 80 100 120	+	+	-	÷	0	+	-	+	+	-	0
Benzoic acid	C ₆ H ₆ -COOH	Fp., 122	aqueous, all	20 40 60 80 100 120 140	+	+ + 0	+	÷ ÷	+ + + +	÷ ÷ ÷	+	+ + + 0	÷	+	÷
Benzyl alcohol	C ₆ H ₅ -CH ₂ -OH	206	technically pure	20 40 60 80 100 120 140	0	-	-	÷ • 0	÷ •	÷ 0	÷ 0	+	-	++++	0
Beryllium salts, aqueous, inorganic				20 40 60 80 100 120 140	+ +	+ + +		÷ ÷	÷ ÷ ÷	÷ ÷ ÷	++++	+ + + +	÷	+	÷

Aggressive media					Ch	emic	al re	sist	ance	:	_	_	_	_	_
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-u	Pvc-c	ABS	PE	PP-H	PVDF	EPDM	FPM	NBR	S. S.	CSM
Calcium salts, aqueous, inorganic			≤ Saturated acid	20 40 60 80 100 120 140	+	+ + + +	+	++++	+ + + +	+ + + + +	+ + +	+ + + +	+	+	+
Carbon dioxide	CO ₂		technically pure, anhydrous	20 40 60 80 100 120 140	+	÷ ÷ ÷		++++	+ + + +	+ + + + +	+ + + +	+ + + +	++++	÷ ÷	+ + + +
Carbon tetrachloride	CCI ₄	77	technically pure	20 40 60 80 100 120 140	-	-	-	-	-	+	-	+	-	-	-
Carbonic acid	H ₂ CO ₃			20 40 60 80 100 120 140	+	+ + +		++++	+ + + +	+ + + +	+ + + +	+ + + +	+	+	+
Caro's acid	H ₂ SO ₅			20 40 60 80 100 120 140	+	0				-		+			
Caustic potash solution (potassium hydroxide)	кон	131	50 %, aqueous	20 40 60 80 100 120 140	0	0		++++	+ + 0	-	+ + 0	-	0	0	+ 0 0 -
Caustic soda solution	NaOH		50 %, aqueous	20 40 60 80 100 120 140	+	0		++++	+ + 0	-	++++	-	0	-	+
Chloric acid	HCIO ₃		10 %, aqueous	20 40 60 80 100 120 140	0	÷ ÷	-	+	-	+	++++	+ +	-	-	++++
Chloric acid	HCIO ₃		20 %, aqueous	20 40 60 80 100 120 140	+	÷ ÷	-	0	-	+	00	÷ ÷	-	-	+

Aggressive media					Ch	emic	al re	sist	ance		_	_	_	_	_
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-u	Pvc-c	ABS	PE	н-н	PVDF	ЕРБМ	FPM	NBR	OR.	CSM
Butyl phenol, p-tertiary	(CH ₃) ₃ C-C ₆ H ₄ -OH	237	technically pure	20 40 60 80 100 120 140	0	0	-	0	+	+ + +	-	0	-	-	-
Butylene glycol	HO-CH₂-CH=CH-CH₂-OH	235	technically pure	20 40 60 80 100 120 140	+ + 0	+ + +		÷ ÷	++++	÷ ÷ ÷	++++	÷ • •	-	÷ ÷	0
Butylene liquid	C ₄ H ₈	51	technically pure	20 40 60 80 100 120 140	+			-	-	+	0	+	+	+	0
Butyric acid	CH ₃ -CH ₂ -CH ₂ -COOH	163	technically pure	20 40 60 80 100 120 140	+	+	-	+	+	+	0	0	-	0	0
Cadmium salts, aqueous, inorganic			≤ saturated acid	20 40 60 80 100 120 140	+++++	+ + + +		÷ ÷	+ + +		+ + + +	+ + + +			
Caesium salts, aqueous, inorganic			≤ Saturated acid	20 40 60 80 100 120 140	++++	+ + + +		÷ ÷	+ + + +	+ + + +	+ + + +	+ + + +	+	+	+
Calcium acetate	(CH ₅ COO)₂Ca		saturated	20 40 60 80 100 120 140	++++	+ + + +		÷ ÷	++++	÷ ÷	+ + +	+ + + +	+	+	+
Calcium hydroxid	Ca(OH) ₂	100	saturated, aqueous	20 40 60 80 100 120 140	+ + +	0		÷ ÷	+ + + +	0	+ + + +	+ + + + +	÷ • •	÷ ÷	+ + + + +
Calcium lactate	(CH ₃ COO) ₂ Ca		saturated	20 40 60 80 100 120 140	+	+		÷ ÷	+ + + +	+ + + +	+ + + +	+ + + +	+	+	+

Aggressive media					Ch	emic	al re	sista	ance	:	_	_	_	_	_
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-U	Pvc-c	ABS	PE	н-ча	PVDF	ЕРОМ	FPM	NBR	CR	CSM
Calcium salts, aqueous, inorganic			≤ Saturated acid	20 40 60 80 100 120 140		+ + +	+	+ + + +	+ + + +	+ + + + +	+ + +	+ + + +	+	+	+
Carbon dioxide	CO2		technically pure, anhydrous	20 40 60 80 100 120 140	+	÷ ÷ ÷		÷ ÷	+ + + +	+ + + + +	÷ ÷ ÷	+ + + +	÷ ÷	÷ ÷	+++++
Carbon tetrachloride	CCI ₆	77	technically pure	20 40 60 80 100 120 140	-	-	-	-	-	+	-	+	-	-	-
Carbonic acid	H ₂ CO ₃			20 40 60 80 100 120 140		÷ ÷		+ + +	+ + + +	+ + + +	+ + + + +	+ + + + +	+	+	+
Caro's acid	H ₂ SO ₅			20 40 60 80 100 120 140	÷	0				-		+			
Caustic potash solution (potassium hydroxide)	кон	131	50 %, aqueous	20 40 60 80 100 120 140	+	0		÷ ÷	÷ • •	-	+ + + 0	-	0	0	+ 0 0 -
Caustic soda solution	NaOH		50 %, aqueous	20 40 60 80 100 120 140	+	0		+ + +	+ + 0	-	+ + +	-	0	-	+
Chloric acid	HCIO ₃		10 %, aqueous			÷ ÷	-	+	-	+	+ + +	+ + +	-	-	++++
Chloric acid	HCIO ₃		20 %, aqueous	20 40 60 80 100 120 140	+	÷ ÷	-	0	-	+	00	+ + + +	-	-	+

Aggressive media					Ch	emic	al re	sist	ance	:					
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-u	PVC-C	ABS	PE	PP-H	PVDF	EPDM	FPM	NBR	S. S.	CSM
Chlorine	Cl ₂		moist, 97 %, gaseous	20 40 60 80 100 120 140		+ + + +	-	-	-	-	-	+	-	-	0
Chlorine	Cl ₂		liquid, technically pure, as double pipe system	20 40 60 80 100 120 140		-	-	-	-	+	-	0	-	-	-
Chlorine	Cl ₂		anhydrous, technically pure, as double pipe system	20 40 60 80 100 120 140		-	-	00.	-	+ + + 0	0	+	-	-	0
Chlorine water	CI ₂ -H ₂ O		saturated	20 40 60 80 100 120 140	0	+ + 0 -	0	00	0	0	0	+	-	0	-
Chloroacetic acid, mono	сісн₂соон		50 %, aqueous	20 40 60 80 100 120 140	+	-	-	+ + 0	+	0	0	-	-	-	0
Chloroacetic acid, mono	сісн₂соон	188	technically pure	20 40 60 80 100 120 140	+	-	-	÷ ÷ 0	+ + 0	0	0	-	-	-	0
Chlorobenzene	C ₆ H ₅ CI	132	technically pure	20 40 60 80 100 120 140	-	-	-	0	0	+ + 0 -	-	-	-	-	0
Chloroethanol	CICH ₂ -CH ₂ OH	129	technically pure	20 40 60 80 100 120 140	-	-	-	+	++++	+ 0 0 -	0	-	-	-	0
Chlorosulphonic acid	CISO ₃ H	158	technically pure	20 40 60 80 100 120 140	0	-	-	-	-	0	-	-	-	-	-

Aggressive media					Ch	emio	al re	sist	ance	-	_	_	_	_	_
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-u	PVC-C	ABS	PE	PP-H	PVDF	EPDM	FPM	NBR	S	CSM
Cyclohexanone	C ₆ H ₁₀ O	155	technically pure	20 40 60 80 100 120 140	l	-	-	÷ 0 0	+ 0 0	÷ 0 -	0	-	-	-	-
Dextrine	(C _s H _{ss} O _s)n		usual commercial	20 40 60 80 100 120 140	+	+ + + +	÷ ÷	÷ ÷	+	+ + + + + + +	+ + + +	++++	++++	++++	+
Di isobutyl ketone	[(CH ₃) ₂ CHCH ₂] ₂ CO	124	technically pure	20 40 60 80 100 120 140		-	-	0	0	÷ o	00	-	-	-	-
Dibrombenzene	$C_eH_sBr_2$		≤ Saturated acid	20 40 60 80 100 120 140		-	-	0	0	+	0	+	-	-	-
Dibuthyl ether	C ₄ H ₉ OC ₄ H ₉	142	technically pure	20 40 60 80 100 120 140		-	-	0	0	+	-	+	+	-	0
Dibutyl phthalate	$C_6H_4(COOC_6H_9)_2$	340	technically pure	20 40 60 80 100 120 140		-	-	+ 0 0	+ 0 0	+ + 0	0	0	-	-	-
Dichloroacetic acid	Cl₂CHCOOH		50 %, aqueous	20 40	÷ • •	-	-	÷ • •	+ + 0	0	+ + + +	00.	-	+	0
Dichloroacetic acid	Cl₂CHCOOH	194	technically pure	20 40	÷ • •	-	-	÷ • •	+ + 0	0	+ + + +	0	-	-	o -
Dichloroacetic acid methyl ester	CI ₂ CHCOOCH ₃	143	technically pure	20 40 60 80 100 120 140		-	-	÷ ÷	++++	0	+	-	-	-	+ + 0

Aggressive media					Ch	emic	al re	sist	ance						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-U	PVC-C	ABS	PE	рр.н	PVDF	EPDM	FPM	NBR	CR.	CSM
Dichlorobenzene	C ₆ H ₄ Cl ₂	180	technically pure	20 40 60 80 100 120 140	-	-	-	0	0	+	0	+	0	0	0
Dichloroethylene	CICH=CHCI	60	technically pure	20 40 60 80 100 120 140	-	-	-	-	-	÷	-	0	-	-	-
Diesel oil				20 40 60 80 100 120 140	+	+	-	÷	0	÷	-	+	+	0	0
Diethyl ether	H ₈ C ₂ -O-C ₂ H ₈	35		20 40 60 80 100 120 140	-	-	-	-	-	-	-	-	-	-	-
Diethylamine	(C ₂ H ₅) ₂ NH	56	technically pure	20 40 60 80 100 120 140		-	-	÷	+	÷ 0 -	0	-	-	-	-
Dimethyl formamide	(CH ₃)₂CHNO	153	technically pure	20 40 60 80 100 120 140	-	-	-	÷ • 0	÷ ÷	-	0	-	0	÷	+
Dimethylamine	(CH₃)₂NH	7	technically pure	20 40 60 80 100 120 140	-	-	-	÷	-	-	0	-	-	-	-
Dioxane	C ₄ H ₈ O ₂	101	technically pure	20 40 60 80 100 120 140	-	-	-	÷ ÷	0000	-	0	-	0	-	-
Ethanolamine	C ₂ H ₇ NO			20 40 60 80 100 120 140	-	-	-	+	+	0	+	0	0	0	0

Aggressive media	1				Ch	emic	al re	sista	ance		_	_	_	_	_
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-u	PVC-C	ABS	PE	рр-н	PVDF	EPDM	FPM	NBR	CR.	CSM
Fluorosilicic acid	H₂SiF ₆		32 %, aqueous	20 40 60 80 100 120 140	+	+ + 0		+ + + +	÷ ÷	+ + + + +	+	0	0	0 -	+ 0 -
Formaldehyde	нсно		40 %, aqueous	20 40 60 80 100 120 140		÷		++++	÷	+ + + +	÷ ÷	+ +	+ + 0	+ + 0	+
Formamide	HCONH ₂	210	technically pure	20 40 60 80 100 120 140	-	-	-	÷ ÷	÷ ÷		+	0	+	+	
Formic acid	нсоон		≤ 25 %	20 40 60 80 100 120 140	+	÷ ÷		++++	÷ ÷	+ + + +	÷ ÷				
Formic acid	нсоон		up to 50 %, aqueous	20 40 60 80 100 120 140	+	-	0	÷ ÷	÷ ÷ 0	+ + + + +	÷ ÷ 0	+ + 0	-	+ + 0	+++0
Formic acid	нсоон	101	technically pure	20 40 60 80 100 120 140		-	-	÷ ÷	÷ 0	+ + + + +	+ + 0 0	+	-	÷ 0 -	+ + + 0
Frigen 12 (Freon 12)	CCI ₂ F ₂	-30	technically pure	20 40 60 80 100 120 140	+	-	-	-	-	0	0	0	0	+	0
Fuel oil				20 40 60 80 100 120 140	+	÷	-	+	0	+	-	+	+	0	0
Furfuryl alcohol	C ₃ H ₆ O ₂	171	technically pure	20 40 60 80 100 120 140	-	-	-	+ + +	0	+ + 0 -	0	-	-	0	0

Aggressive media					Ch	emic	al re	sista	ance	1					
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-u	PVC-C	ABS	PE	PP-H	PVDF	EPDM	FPM	NBR	S.	CSM
Fluorosilicic acid	H ₂ SiF ₆		32 %, aqueous	20 40 60 80 100 120 140		+ + 0		+ + +	÷ ÷	+ + + + +	+	0	0	0	0 -
Formaldehyde	нсно		40 %, aqueous	20 40 60 80 100 120 140	+	÷		÷ ÷	÷	+ + + +	÷ ÷	++++	+	÷ • •	+ + 0
Formamide	HCONH₂	210	technically pure	20 40 60 80 100 120 140	-	-	-	++++	÷ ÷		+	0	+	÷	
Formic acid	нсоон		≤ 25 %	20	+ + +	÷ ÷		÷ ÷	÷ ÷ ÷	+ + + +	+ + +				
Formic acid	нсоон		up to 50 %, aqueous	20 40 60 80 100 120	+	-	0	÷ ÷	÷ • 0	+ + + + +	+	+ 0 -	-	÷ ÷ 0	+ + 0
Formic acid	нсоон	101	technically pure	20 40 60 80 100 120 140	÷ 0	-	-	÷ ÷	÷ 0	+ + + + +	+ + 0 0	+	-	÷ 0 -	+++0
Frigen 12 (Freon 12)	CCl ₂ F ₂	-30	technically pure	20 40 60 80 100 120 140	+	-	-	-	-	0	0	0	0	+	0
Fuel oil				20 40 60 80 100 120 140	+	÷ ÷	-	÷	0	+	-	+	+	0	0
Furfuryl alcohol	C ₃ H ₆ O ₂	171	technically pure	20 40 60 80 100 120 140	-	-	-	÷ ÷	0	+ + 0 -	0	-	-	0	0

Aggressive media					Ch	emic	al re	sista	ance		_	_	_	_	_
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-u	Pvc-c	ABS	PE	н-н	PVDF	EPDM	FPM	NBR	CR	CSM
Hydrochloric acid	нсі		38 %, aqueous	20 40 60 80 100 120 140	+ + + +	+ + + 0	-	+	0	+ + + +	0	+	-	-	+
Hydrocyanic acid	HCN	26	technically pure	20 40 60 80 100 120 140	+ + 0	++++	-	÷ ÷	÷ ÷	+ + + +	0	÷ 0	0	0	0
Hydrofluoric acid	HF		40 %	20 40 60 80 100 120 140	+ 0 0	-	-	+	÷ ÷	+ + + + +	-	+	-	-	+
Hydrogen	H ₂	-25 3	technically pure	20 40 60 80 100 120 140	++++	+ + +	+++++	÷ ÷	÷ ÷	+ + + + +	÷ ÷	+ + + +	+ + + + +	÷ ÷ ÷	+++++
Hydrogen chloride	нсі	-85	technically pure, gaseous	20 40 60 80 100 120 140	+ + 0	+ + 0	-	÷ ÷	÷ ÷	+ + + +	÷ ÷	+ + +	0	0	00.
Hydrogen peroxide	H ₂ O ₂	105	30 %, aqueous	20 40 60 80 100 120 140	+	÷	-	÷	÷	0	0	+	-	-	+
Hydrogen peroxide	H ₂ O ₂	139	90 %, aqueous	20 40 60 80 100 120 140	+	-	-	0			-	0	-	-	0
Hydrogen sulphide	H₂S		saturated, aqueous	20 40 60 80 100 120 140	+ + 0	+ + +		÷ ÷	÷ ÷	+ + + +		+ + + 0	-	+	+ 0 -
Hydrogen sulphide	H ₂ S		technically pure	20 40 60 80 100 120 140	+	+++++		+ + 0	÷ ÷	+ + + + +		+ + 0 -	0	0	+ 0 0 -

Aggressive media					Che	emic	al re	sist	ance		_	_	_	_	_
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-u	PVC-C	ABS	PE	н-н	PVDF	EPDM	FPM	NBR	CR.	CSM
Hydroquinone	C ₆ H ₆ (OH) ₂		30 %	20 40 60 80 100 120 140		+		+ + +	+ + + +		+				
lodine-potassium iodide solution (Lugol's solution)	I-KI			20 40 60 80 100 120 140	+	-	-	+	+	+	+	+		0	0
Iron salts, aqueous, inorganic			≤ Saturated acid	20 40 60 80 100 120 140	÷ ÷	+ + + +	+	÷ ÷	+ + + +	÷ ÷ ÷	+ + + +	+ + + +	+	+	+
Isooctane	(CH ₃) ₃ -C-CH ₂ -CH-(CH ₃) ₂	99	technically pure	20 40 60 80 100 120 140	+	+	-	+	+	+		+	+	+	0
Isopropyl alcohol (ESC)	(CH ₃) ₂ -CH-OH	82	technically pure	20 40 60 80 100 120 140	+	-		+ + 0	+ + 0	+ + 0	+	+	+	+	+
Isopropyl ether	(CH ₃) ₂ -CH-O-CH-(CH ₃) ₂	68	technically pure	20 40 60 80 100 120 140	-	-	-	0	0	+	0	-	-	-	-
Lactic acid	сн₃снонсоон		10 %, aqueous	20 40 60 80 100 120 140	+ 0 -	+ + + +	+ 0 -	+ + +	+ + + +	+ + 0 0 .	+ + 0 -	+ 0 0 0	-	-	000
Lead acetate	Pb(CH ₃ COO) ₂		aqueous, saturated	20 40 60 80 100 120 140	+	+ + + +	+ + +	+ + +	++++	+ + + +	+ + + +	+ + + +	+ + +	÷ ÷	+ + + +
Lead salts, aqueous, inorganic			≤ Saturated acid	20 40 60 80 100 120 140	+ + +	+ + + +		+ +	+ + +	+ + + +	+ + +	+ + + +	+	+	+

Aggressive media					Ch	emic	al re	sista	ance		_	_	_	_	_
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-u	PVC-C	ABS	PE	н-ча	PVDF	ЕРБМ	FPM	NBR	CR	CSM
Linseed oil			technically pure	20 40 60 80 100 120 140	+ + 0			+ + +	+ + + +	+ + + + + +	÷ ÷	+ + + +	+ + +	0	+ 0 -
Lithium salts, aqueous, inorganic			≤ Saturated acid	20 40 60 80 100 120 140	++++	÷ ÷ ÷		+	÷ ÷	+ + + +	÷ ÷	+ + + +		+	+
Magnesium salts, aqueous, inorganic			≤ Saturated acid	20 40 60 80 100 120 140	+ + 0	÷ ÷ ÷		÷ ÷	÷ ÷ ÷	+ + + + +	÷ ÷	+ + + +	++++	÷ ÷	+ + + +
Maleic acid	(CH-COOH) ₂	Fp., 131	cold saturated, aqueous	20 40 60 80 100 120 140	+	÷		+ + +	÷ ÷	+ + + + + +	÷ ÷	+ + + -	-	-	-
Mercury	Hg	357	pure	20 40 60 80 100 120 140	++++	+	+	+ + + +	÷ ÷	+ + + + + +	÷ ÷	+ + + +	+ + + +	+ + + +	++++
Mercury salts			≤ saturated	20 40 60 80 100 120 140	+ + 0	÷ ÷		+ + +	÷ ÷	+ + + +	÷ ÷	+++++	00.	00.	00-
Methane (natural gas)	CH₄	-16 1	technically pure	20 40 60 80 100 120 140	+	÷	÷	÷	÷	+		+	+	-	-
Methanol	сн₃он	65	all	20 40 60 80 100 120 140	+ + 0	-	-	÷ ÷	÷ ÷	÷ 0 -	÷ ÷	000	+ + +	÷ •	++++
Methyl acetate	сн₃соосн₃	56	technically pure	20 40 60 80 100 120 140	-	-	-	+	+	+	+	-	-	-	-

Aggressive media					Ch	emio	al re	sista	ance	:	_	_	_	_	_
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-U	PVC-C	ABS	PE	рр-н	PVDF	EPDM	FPM	NBR	CR	CSM
Mixed acids - sulphuric - nitric - water	H ₂ SO ₄ HNO ₃ H ₂ O		10 % 20 % 70 %	20 40 60 80 100 120 140	+	÷ ÷	-	+	-	+ + + +	-	+ + +	-	0	0
Mixed acids - sulphuric - nitric - water	H ₂ SO ₄ HNO ₃ H ₂ O		50 % 33 % 17 %	20 40 60 80 100 120 140		÷	-	-	-	+	-	+	-	-	0
Mixed acids - sulphuric - nitric - water	H ₂ SO ₄ HNO ₃ H ₂ O		50 % 31 % 19 %	20 40 60 80 100 120 140	÷	0	-	-	-	+	-	+	-	0	0
Mixed acids - sulphuric - nitric - water	H ₂ SO ₄ HNO ₃ H ₂ O		10 % 87 % 43 %	20 40 60 80 100 120 140	-	-	-	-	-	0	-	-	-	-	-
Mixed acids - sulphuric - nitric - water	H ₂ SO ₄ HNO ₃ H ₂ O		48 % 49 % 43 %	20 40 60 80 100 120 140	0	+	-	-	-	+ + + +	-	+++++	-	-	-
Mixed acids - sulphuric - phosphoric - phosphoric	H ₂ SO ₄ H ₃ PO ₄ H ₂ O		30 % 60 % 10 %	20 40 60 80 100 120 140		÷ ÷	-	+++++	÷ ÷	+ + + +	÷ ÷	++++	-	0	0
N.N- Dimethylaniline	C ₆ H ₃ N(CH ₃) ₂	194	technically pure	20 40 60 80 100 120 140	-	-	-	+	÷		+				
N- Methylpyrrolidon	C₃H₃NO	204		20 40 60 80 100 120 140	-	-	-	+	+	0	+	0			
Naphthalene	C ₁₀ H ₈	218	technically pure	20 40 60 80 100 120 140	-	-		+	+	+	-	+	+	-	0

Aggressive media					Che	emic	al re	sist	ance	:					
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-U	Pvc-c	ABS	ЬE	PP-H	PVDF	ЕРОМ	FPM	NBR	CR	CSM
Nickel salts, aqueous, inorganic			≤ Saturated acid	20 40 60 80 100 120 140		+ + +		+ + +	+ + +	+ + + + +	+ + +	+ + + +	+ + +	+ + +	+ + +
Nitrating acid	H ₂ SO ₄ HNO ₃ H ₂ O		65 % 20 % 15 %	20 40 60 80 100 120 140		0		-	-	+	-	+	-	-	-
Nitric acid	HNO ₃		6.3 %, aqueous	20 40 60 80 100 120 140		+ + +		+ + +	+ + 0	+ + + + +	÷ 0	+ + + 0	-	-	÷ 0 -
Nitric acid	HNO ₃		≤ 25 %	20 40 60 80 100 120 140		+ + +	-	÷ ÷ 0	0	+ + + + +	+	+			
Nitric acid	HNO ₃		65 %, aqueous	20 40 60 80 100 120 140	0	+	-	0	-	+ + 0 -	-	+ 0 -	-	-	0
Nitric acid	HNO ₃		85 %	20 40 60 80 100 120 140	-	-	-	-	-	+	-	+	-	-	-
Nitric acid	HNO ₃		100 %	20 40 60 80 100 120 140	-	-	-	-	-	-	-	-	-	-	-
Nitrobenzene	C ₆ H ₅ -NO ₂	209	technically pure	20 40 60 80 100 120 140	-	-	-	÷	+	+	0	+	-	-	-
Nitrotoluene (o-, m-, p-)	C ₂ H ₂ NO ₂	222 - 238	technically pure	20 40 60 80 100 120 140	-	-	-	÷ 0	0	+ + 0 -	-	0	0	-	-

Aggressive media					Che	emic	al re	sista	ance		_	_	_	_	_
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-U	Pvc-c	ABS	PE	н-н	PVDF	ЕРБМ	FPM	NBR	CR	CSM
Nitrous acid	HNO ₂			20 40 60 80 100 120 140		+	-	+	-	+ + +	+	+			
Nitrous gases (Nitric oxide)	NOx		diluted, moist, anhydrous	20 40 60 80 100 120 140		+	-	0	0	+	0	+	0	+	+
Oleic acid	C ₁₇ H ₃₃ COOH		technically pure	20 40 60 80 100 120 140	+	0	-	+ + 0	+ + 0	+ + + + + +	-	0	0	-	-
Oleum	H ₂ SO ₄ +SO ₃		10 % SO3	20 40 60 80 100 120 140	-	-	-	-	-	-	-	-	-	-	-
Olive oil				20 40 60 80 100 120 140	+	-	-	+ + 0	÷ ÷	+ + + +	-	+ + + + +	++++	÷ ÷	+ 0 -
Oxygen	O ₂		technically pure	20 40 60 80 100 120 140	+	÷ ÷		+ + 0	÷ •	+ + + 0 0	÷ ÷	+ + + + +	+	÷ ÷	+ + + + +
Ozone	O ₃		up to 2 %, in air	20 40 60 80 100 120 140	+	0	-	0	0	0	0	+	-	0	+
Ozone	O ₃		cold saturated, aqueous	20 40 60 80 100 120 140	+	0	-	0	0	0	-	+	-	0	+
Palm oil, palm nut oil				20 40 60 80 100 120 140	+	0		+	+	+	-	+	+	+	0

Aggressive media					Ch	emio	al re	sista	ance	:	_	_	_	_	_
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-u	PVC-C	ABS	PE	н-н	PVDF	ЕРБМ	FPM	NBR	GR.	CSM
Paraffin emulsions			usual commercial, aqueous	20 40 60 80 100 120 140	+	+		+	+	+	-	+	+	+	+
Paraffin oil				20 40 60 80 100 120 140	+	+	0	+	+	+	-	+	+	+	0
Perchlorid acid	HCIO₄		10 %, aqueous	20 40 60 80 100 120 140	+	+		+	+	+	+	+	-	-	+
Perchlorid acid	HCIO ₄		70 %, aqueous	20 40 60 80 100 120 140	+	-	-		-	0	-	+	-	-	+
Perchloro- ethylene (Tetrachlorethylene)	Cl ₂ C=CCl ₂	121	technically pure	20 40 60 80 100 120 140	-	-		0	0	+ + 0 -	-	+ + +	0	-	-
Phenol	C ₆ H ₅ -OH	182	up to 10 %, aqueous	20 40 60 80 100 120 140		00	-	+ + 0	++++	+ + + +	+ + 0 0	+ + + 0	-	-	-
Phenol	C ₆ H ₅ -OH		up to 90 %, aqueous	20 40 60 80 100 120 140		-	-	+ + 0	++++	÷ ÷ 0	-	÷ 0 -	-		-
Phosgene	COCI2		gaseous, technically pure	20 40 60 80 100 120 140	+ 0 0	-	-	0	0	+	+	÷ •	÷ ÷	÷ 0	0
Phosgene	COCI2	8	liquid, technically pure	20 40 60 80 100 120	-	-	-	-	-	-	-	+	0	+	+

Aggressive media					Ch	emic	al re	sist	ance						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-u	PVC-C	ABS	PE	PP-H	PVDF	EPDM	FPM	NBR	CR	CSM
Phosphoric acid	H ₃ PO ₄		85 %, aqueous	20 40 60 80 100 120 140	+	+ + + +		+ + +	+ + + +	+ + + + + +	+ + 0	+ + + 0	-	+ + 0	+ 0 -
Phosphoric acid	H ₃ PO ₄		up to 95 %	20 40 60 80 100 120 140	+	÷ ÷	-	+	+	+ + + +	0	÷ • 0	-	-	-
Phosphorous chlorides: trichloride pentachloride oxichloride	PCI ₃ PCI ₅ POCI ₅	175 162 105	technically pure	20 40 60 80 100 120 140		-	-	-	-	-		-	-	-	-
Photographic developer			usual commercial	20 40 60 80 100 120	+	÷ ÷ 0	+ + 0	+ + 0	+	++++	+	+	00	+	+ +
Photographic emulsions				20 40 60 80 100 120	+	+ + 0	+	+	+	++++	+	+	0	÷	+ +
Photographic fixer			usual commercial	20 40 60 80 100 120	+	÷ ÷	+ + 0	+	+	+ + +	+	+	+	+	+ +
Phthalic acid	C ₆ H ₅ (COOH) ₂		saturated, aqueous	20 40 60 80 100 120 140	0	-	-	÷ ÷	+ + +	+ + + + +	0	-	-	÷ • •	+ +
Potassicim hydroxide	кон		50 %	20 40 60 80 100 120 140	++++	0		÷ ÷	÷ ÷ 0	-	+	-	0	0	+
Potassium aluminium salts (alum), aqueous, inorganic	KAI(SO ₄) ₂		≤ Saturated acid	20 40 60 80 100 120 140	+	+ + +		÷ ÷	+ + + +	+ + + + +	÷ ÷		-	+	+

Aggressive media					Ch	emic	al re	sist	ance	_	_	_	_	_	
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-U	PVC-C	ABS	PE	PP-H	PVDF	EPDM	FPM	NBR	O.R.	CSM
Potassium persulphate (Potassium Peroxidsulfate)	K ₂ S ₂ O ₈		all, aqueous	20 40 60 80 100 120 140	+ + 0	+ + +		+ + +	+ + +	+ + + +	+	+ + + +	-	+	+
Potassium- hypochlorite	косі			20 40 60 80 100 120 140		0		0	0	0	+	0	0	0	0
Propane	H₃C-CH₃-CH₃		technically pure, gaseous	20 40 60 80 100 120 140	٠	+		0	+	+		+	0	0	0
Propane	H ₃ C-CH ₂ -CH ₃	-42	technically pure, liquid	20 40 60 80 100 120 140	+	-		+	+	+		+	0	0	0
Propanol, n- and iso-	C₃H₁OH	97 bzw . 82	technically pure	20 40 60 80 100 120		-		÷ • 0	+	+ + 0	+	+	÷	÷	÷
Propionic acid	сн₃сн₂соон	141	50 %, aqueous	20 40 60 80 100 120		0	-	+ + +	++++	++++	+	0	-	0	0
Propionic acid	H₃C-CH₂-COOH	141	technically pure	20 40 60 80 100 120 140	0	0	-	+ 0 0	+ 0 0	+ + +	0	+ + + 0	-	-	-
Propylene glycol	C ₃ H ₈ O ₂		< 50 %	20 40 60 80 100 120 140	÷ ÷	-		++++	++++	÷ ÷	+	÷ • •	÷ 0	÷	÷ ÷
Propylene glycol	C ₃ H ₈ O ₂	188	technically pure	20 40 60 80 100 120 140	+	+	+	÷ ÷	+ + + +	+ + + +	+ + + +	+ + + 0	÷ • 0	÷ • •	+ + + 0

Aggressive media			Г		Ch	emio	al re	sista	ance	1	_	_	_	_	_
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-U	Pvc-c	ABS	PE	PP-H	PVDF	EPDM	FPM	NBR	CR	CSM
Pyridine	C₃H₅N	115	technically pure	20 40 60 80 100 120 140	-	-	-	+ 0 0	000	+	0	-	-	-	-
Salicylic acid	C ₆ H ₄ (OH)COOH		saturated	20 40 60 80 100 120 140	++++	÷		÷ ÷	÷ ÷	+++++	÷ ÷	+	+	+	+
Sea water				20 40 60 80 100 120 140	+ + 0	++++	++++	÷ ÷	+ + + +	+ + + + +	÷ ÷ ÷	+ + + +	+ + + 0	+ + 0 -	+ + 0 -
Silicic acid	Si(OH) ₄			20 40 60 80 100 120 140	++++	++++		+ + +	÷ ÷		÷ ÷	+	-	+	+
Silicone oil				20 40 60 80 100 120 140	+ 0 -	+	+	+ + +	÷ ÷ ÷	+ + + +	÷ ÷	÷ ÷	+ + +	÷ ÷ 0	+
Silver salts, aqueous, inorganic			≤ Saturated acid	20 40 60 80 100 120 140	++++	÷ ÷ ÷	+	÷ ÷	÷ ÷ ÷	+ + + +	÷ ÷	÷ ÷ ÷	+ + +	÷ ÷	++++
Sodium chlorite	NaClO ₂		diluted, aqueous	20 40 60 80 100 120 140	+	0		0	0	0	0	+	-	0	+
Sodium hypochlorite	NaOCI		12.5 % active chlorine, aqueous	20 40 60 80 100 120 140	+	0	-	00	00	0	÷	0	-	-	+
Sodium persulphate	Na ₂ S ₂ O ₈		cold saturated, aqueous	20 40 60 80 100 120 140	+	++++		+ + +	÷ ÷	+++++	+	÷ ÷ ÷	-	+	+

Aggressive media					Ch	emic	al re	sist	ance	1	_	_	_	_	_
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC-U	PVC-C	ABS	PE	н-н	PVDF	EPDM	FPM	NBR	CR.	CSM
Sodium salts, aqueous, inorganic			≤ Saturated acid	20 40 60 80 100 120 140	+	+ + + +		+ + +	+ + + +	+ + + + + +	+ + + +	+ + + +	+	+	+
Stannous chloride	SnCl₂		cold saturated, aqueous	20 40 60 80 100 120 140	0	+ + 0	+	÷ ÷	+ + + +	+ + + +	÷ 0	+ + +	+ + 0	+ + +	++++
Starch solution	(C _s H ₁₀ O _s)n		all, aqueous	20 40 60 80 100 120 140	+	+ + + +	+	÷ ÷	÷ ÷	+ + + +	+ + +	÷ ÷	÷ ÷	÷ ÷	++++
Styrene	H ₂ C ₆ -CH=CH ₂	145		20 40 60 80 100 120 140	-	-	-			+		+			
Succinic acid	HOOC-CH ₂ -CH ₂ -COOH	Fp., 185	aqueous, all	20 40 60 80 100 120 140	+	+ + +	+	÷ ÷	+ + + +	+ + +	++++	+ + + +	+	+ + + +	+++++
Sulfurous acid	H ₂ SO ₃		saturated, aqueous	20 40 60 80 100 120 140	÷	+		÷ ÷	+++++	+ + + + + +	-	+ + 0 -	-	-	00.
Sulfuryl chloride	SO ₂ Cl ₂	69	technically pure	20 40 60 80 100 120 140		-	-	-	-	0		+	-	0	+
Sulphur dioxide	SO ₂		technically pure, liquid	20 40 60 80 100 120 140		-	-	-	-	-	-	0	-	-	0
Sulphur dioxide	SO ₂		all, moist	20 40 60 80 100 120 140	+	+	-	÷ ÷	++++	+ + + +	0	÷ 0 -	-	-	0

Aggressive media					Ch	emic	al re	sist	ance						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-u	PVC-C	ABS	PE	рр-н	PVDF	EPDM	FPM	NBR	CR	CSM
Sulphuric acid	H ₂ SO ₄	195	up to 80 %, aqueous	20 40 60 80 100 120 140	+	÷ ÷	-	+ + 0	+ + 0	+ + + + 0	00.	+ + 0 -	-	-	+ 0 -
Sulphuric acid	H ₂ SO ₄		96 %, aqueous	20 40 60 80 100 120 140	0	÷ ÷	-	-	-	-	-	++++	-	-	-
Sulphuric acid	H ₂ SO ₄	340	98 %	20 40 60 80 100 120 140	0	÷ • •	-	-	-	-	-	0	-	-	-
Tannic acid			all, aqueous	20 40 60 80 100 120		÷ ÷		÷ ÷	+ + +			+	+	+	+
Tetrachlorethyle nesee Perchloro- ethylene	Cl ₂ C-CCl ₂	121		20 40 60 80 100 120		-	-	-	-	+	-	+			
Tetrachloro- ethane	Cl ₂ CH-CHCl ₂	146	technically pure	20 40 60 80 100 120		-	-	0	0	+	-	0	-	-	-
Tetraethylene lead	(C₂H₅)₄Pb		technically pure	20 40 60 80 100 120 140	+	+	-	÷	÷	+	0	+	+	0	+
Tetrahydrofurane	C ₄ H ₈ O	66	technically pure	20 40 60 80 100 120 140	-	-	-	0	0	-	0	-	-	-	-
Tin salts, aqueous, inorganic			≤ saturated acid	20 40 60 80 100 120 140	++++	÷ ÷		÷ ÷	+ + + + +	+ + + + +	+ + + +	+ + + +	+	+	+

Aggressive media					Ch	emic	al re	sist	ance	_	_	_	_	_	
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-u	PVC-C	ABS	PE	PP-H	PVDF	EPDM	FPM	NBR	R	CSM
Toluene	C ₆ H ₅ -CH ₅	111	technically pure	20 40 60 80 100 120 140		-	-	0	0	+	-	+	-	-	-
Trichloro- methane	CHCI ₃	61	100 %	20 40 60 80 100 120 140						+		+			
Trichloroacetic acid	CI3-C-COOH		50 %, aqueous	20 40 60 80 100 120 140		-	-	÷ ÷	+	+ + 0 -	0	-	-	-	-
Trichloroacetic acid	CI ₃ -C-COOH	196	technically pure	20 40 60 80 100 120 140	0	-	-	÷ 0	+ + 0	0	0	-	-	-	-
Trichloroethane	Cl ₃ -C-CH ₃	74	technically pure	20 40 60 80 100 120 140	-	-	-	0	0	+	-	+	-	-	-
Trichloroethylene	Cl ₂ C=CHCl	87	technically pure	20 40 60 80 100 120 140		-	-	-	0	+	-	+	-	-	-
Triethylamine	N(CH ₂ -CH ₃) ₃	89	technically pure	20 40 60 80 100 120 140		-	-	÷	+	0	-	-	-	-	-
Trifluoro acetic acid	F₃C-COOH		up to 50 %	20 40 60 80 100 120 140		-	-	+	+	÷ 0	0	-	-	-	-
Turpentine oil			technically pure	20 40 60 80 100 120 140	0	-	-	00	-	+	-	++++	0	-	-

Aggressive media						Chemical resistance										
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-U	PVC-C	ABS	PE	рр-н	PVDF	EPDM	FPM	NBR	CR	CSM	
Urea	H ₂ N-CO-NH ₂	Fp., 133	up to 30 %, aqueous	20 40 60 80 100 120 140	0	+ + + 0	+	+ + + +	+ + + +	+ + + 0	+ + + +	+ + +	+ + + +	+ + + +	+ + +	
Urine				20 40 60 80 100 120 140	+	÷ ÷		÷ ÷	÷ ÷	+ + + + +	+	++++	++++	++++	++++	
Vinyl acetate	CH ₂ =CHOOCCH ₃	73	technically pure	20 40 60 80 100 120 140	-	-	-	÷	0	-	+	-	-	-	-	
Vinyl chloride	CH ₂ =CHCI	-14	technically pure	20 40 60 80 100 120 140	-	-	-	-	-	+	-	+	-	-		
Waste gases containing - Alkaline				20 40 60 80 100 120	+	÷ ÷		÷ ÷	÷ ÷ ÷	00.		+ + + 0 -	++++	÷ ÷	+ 0 -	
Waste gases containing - Hydrochloric acid			all	20 40 60 80 100 120 140		÷ ÷ ÷		÷ ÷	÷ ÷ 0	+ + + + + +	÷ ÷ 0	+ + + +	0	+ + +	+ + + +	
Waste gases containing - Hydrogen fluoride			traces	20 40 60 80 100 120 140	++++	÷ ÷		÷ ÷	÷ ÷	+ + + + +	000	+ + + +	+ 0 -	+ + 0	++++	
Waste gases containing - Nitrous gases			traces	20 40 60 80 100 120 140	+	÷ ÷		+ 0 0	000	+ + + + +	+ 0 0 0	+ + + 0	0	+	+ + + 0	
Waste gases containing - Sulphur dioxide			traces	20 40 60 80 100 120 140	+	0		÷	+	+	÷ ÷ ÷	+ + + +	0	+	+	

www.allvalves.co.uk

Aggressive media					Chemical resistance										
Medium	Formula	Boiling point °C	Concentration	Temperature °C	Pvc-u	Pvc-c	ABS	PE	рр.н	PVDF	EPDM	FPM	NBR	GR.	CSM
Water, drinking, chlorinated			≤ 0.1 ppm Cl2	20 40 60 80 100 120 140	+ + +	+ + +	+ + +	÷ ÷	+ + + + +	÷ ÷ ÷ ÷	÷ ÷ 0	+ + + + +	+ + 0	+ + +	÷ ÷
Water - distilled - deionised	H ₂ O	100		20 40 60 80 100 120 140	÷ ÷	+ + + +	+ + +	÷ ÷	+ + + +	÷ ÷ ÷ ÷	+ + 0 -	+ + + + + +	÷ ÷ ÷	÷ ÷	÷ ÷ ÷
Xylene	$C_eH_e(CH_3)_2$	138 - 144	technically pure	20 40 60 80 100 120 140	-	-	-	-	-	+ + 0 -	-	+ 0 -	-	-	-
Zinc salts, aqueous, inorganic			≤ Saturated acid	20 40 60 80 100 120 140	+++++	+ + +	+	÷ ÷	+ + + +	÷ ÷ ÷	+ + +	+ + + +			

Core Brands

www.allvalves.co.uk

Allvalves can supply a wide range of plastic valves, fittings and pipe work systems, working with the leading brands, in a wide range of materials from PVC-U, ABS, CPVC,, PP-H and PVDF. Allvalves can offer ball and butterfly valves, diaphragm valves, pipe work including double wall pipe work. As a valve actuation specialist, Allvalves can offer electric and pneumatic actuated valves from stock.

Actuated Plastic Valves

In PVC, ABS, CPVC, PP + PVDF

Pipe & fittings in PVC, ABS & more

Lined valves available